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Abstract. Starting from a formula for tan(nx) in the celebrated Hakmem report [1]
we find a continued fraction expansion for tan(nx) in terms of tan(x).

1. Introduction

Gauss’ hypergeometric function is defined by

F
(a, b

c

∣∣∣z) =
∑
n≥0

anbnzn

cnn!
,

with xn = x(x + 1) . . . (x + n − 1), a rising factorial. (An older way to write this
rising factorial is (x)n; for the hypergeometric functions there exist different notations
as well.) This function has two upper and one lower parameter and is thus often
called the “two–eff–one”. Hypergeometric functions are studied with any numbers of
upper and lower parameters, but this one is the most prominent one; compare [2].
Hypergeometric functions are omnipresent in mathematics, and also well established
in modern computer algebra systems such as Maple or Mathematica.

The following description is borrowed from [6].
Gauss’ hypergeometric function satisfies the contiguous relation

F
(a, b

c

∣∣∣z) = F
(a, b + 1

c + 1

∣∣∣z)− a(c− b)

c(c + 1)
zF
(a + 1, b + 1

c + 2

∣∣∣z).
To see this, we compare coefficients of zn. For n = 0, they match, so let us assume

that n ≥ 1. We start with the right-hand side:

an(b + 1)n

(c + 1)nn!
− a(c− b)

c(c + 1)

(a + 1)n−1(b + 1)n−1

(c + 2)n−1(n− 1)!
=

(a + 1)n−1(b + 1)n−1

(c + 2)n−1n!

[
a(b + n)

c + 1
− a(c− b)n

c(c + 1)

]
=

(a + 1)n−1(b + 1)n−1

(c + 2)n−1n!

ab(c + n)

c(c + 1)
=

anbn

cnn!
,

as predicted. We also need a variation of this: First, we interchange a and b:

F
(a, b

c

∣∣∣z) = F
(a + 1, b

c + 1

∣∣∣z)− b(c− a)

c(c + 1)
zF
(a + 1, b + 1

c + 2

∣∣∣z).
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Now we increase both b and c by 1:

F
(a, b + 1

c + 1

∣∣∣z) = F
(a + 1, b + 1

c + 2

∣∣∣z)− (b + 1)(c + 1− a)

(c + 1)(c + 2)
zF
(a + 1, b + 2

c + 3

∣∣∣z).
We rewrite the first contiguous relation as

F
(

a,b
c

∣∣z)
F
(

a,b+1
c+1

∣∣z) = 1− a(c− b)

c(c + 1)
z
F
(

a+1,b+1
c+2

∣∣z)
F
(

a,b+1
c+1

∣∣z)
and further as

F
(

a,b+1
c+1

∣∣z)
F
(

a,b
c

∣∣z) =
1

1− a(c−b)
c(c+1)

z
F
(

a+1,b+1
c+2

∣∣z)
F
(

a,b+1
c+1

∣∣z)
.

A similar procedure applied to the variant leads to

F
(

a+1,b+1
c+2

∣∣z)
F
(

a,b+1
c+1

∣∣z) =
1

1− (b+1)(c−a+1)
(c+1)(c+2)

z
F
(

a+1,b+2
c+3

∣∣z)
F
(

a+1,b+1
c+2

∣∣z)
.

This can be used in the first form:

F
(

a,b+1
c+1

∣∣z)
F
(

a,b
c

∣∣z) =
1

1−
a(c−b)
c(c+1)

z

1− (b+1)(c−a+1)
(c+1)(c+2)

z
F
(

a+1,b+2
c+3

∣∣z)
F
(

a+1,b+1
c+2

∣∣z)
.

Now the first form can be used again, with a, b, c replaced by a + 1, b + 1, c + 2. In the
resulting form, the variant can be used, and so on. The result is the continued fraction
of Gauss :

F
(

a,b+1
c+1

∣∣z)
F
(

a,b
c

∣∣z) =
1

1−
a(c−b)
c(c+1)

z

1−
(b+1)(c−a+1)
(c+1)(c+2)

z

1−
(a+1)(c−b+1)
(c+2)(c+3)

z

1−
(b+2)(c−a+2)
(c+3)(c+4)

z

1− . . .

.

The expansion is purely formal and provides more and more correct coefficients of the
powers of z. The book [6] discusses also the analytic validity of the expansion.

2. An application to tangents of multiple values

Almost everybody knows that

sin(2x)

sin(x)
= 2 cos(x),

sin(3x)

sin(x)
= 4 cos2(x)− 1,

sin(4x)

sin(x)
= 8 cos3(x)− 4 cos(x), &c.,
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and

cos(2x) = 2 cos2(x)−1, cos(3x) = 4 cos3(x)−3 cos(x), cos(4x) = 8 cos4(x)−8 cos2(x)+1, &c.,

and that the polynomials that appear here are the Chebyshev polynomials.
Most people might have asked themselves whether there is something similar for the

tangent function. Yes, there is, but it is not widely known.
In the celebrated Hakmem report [1] we find entry 16:

tan(n arctan(t)) =
1

i

(1 + it)n − (1− it)n

(1 + it)n + (1− it)n
for an integer n ≥ 0,

which is equivalent to

tan(nx) =

∑
0≤k≤n/2

(−1)k
(

n
2k+1

)
tan2k+1(x)∑

0≤k≤n/2

(−1)k
(

n
2k

)
tan2k(x)

.

Compare with the sequences [5, A034839, A034867].
This is the formula of interest; it expresses tan(nx) as a rational function of tan(x)

(not a polynomial, as in the simpler cases of sin(nx) and cos(nx)). For computational
(and aestethic!) reasons it is, however, beneficial to express this rational function as a
continued fraction.

Let

f(z) =
∑
k≥0

(
n

2k + 1

)
zk and g(z) =

∑
k≥0

(
n

2k

)
zk,

then we get

f(z)

g(z)
= n

F
( −n+1

2
, n+1

2
3
2

∣∣∣ z

z − 1

)
F
( −n+1

2
, n+1

2
1
2

∣∣∣ z

z − 1

) ;

this conversion into hypergeometric functions is best done nowadays by a computer.
Using Pfaff’s reflection law [2]

F
(a, b

c

∣∣∣ z

z − 1

)
= (1− z)aF

(a, c− b

c

∣∣∣z),
this can be rewritten as

f(z)

g(z)
= n

F
(

n+1
2

, n
2
+1

3
2

∣∣∣z)
F
(

n+1
2

, n
2

1
2

∣∣∣z) .
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Now it is in good shape to apply Gauss’ continued fraction to it:

f(z)

g(z)
=

n

1 +

(n + 1)(n− 1)

1 · 3
z

1 +

(n + 2)(n− 2)

3 · 5
z

1 +

(n + 3)(n− 3)

5 · 7
z

. . .

Observe that for natural numbers n this expansion is always finite, and one does not
have to worry about convergence.

For our application, we must replace z by − tan2(x), and multiply the whole expan-
sion by tan(x). The result is

tan(nx) =
n tan(x)

1−

(n + 1)(n− 1)

1 · 3
tan2(x)

1−

(n + 2)(n− 2)

3 · 5
tan2(x)

1−

(n + 3)(n− 3)

5 · 7
tan2(x)

. . .

.

For example,

tan(5x) =
5 tan(x)

1−
8 tan2(x)

1−
7
5

tan2(x)

1−
16
35

tan2(x)

1− 1
7

tan2(x)

.

3. An independent derivation of the continued fraction expansion

Not everybody is completely comfortable with hypergeometric functions, hypergeo-
metric transformations, contiguous relations, etc. We demonstrate how such people
can also derive the continued fraction expansion for tan(nx), by using a technique that
has produced many other beautiful expansions [3, 4].

We will show that

zf(z)

g(z)
=

z

a0 +
z

a1 +
z

a2 +
z

. . .

,
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with

a2k = (4k + 1)

k∏
j=−k+1

(n + 1− 2j)

k∏
j=−k

(n− 2j)

and a2k+1 = (4k + 3)

k∏
j=−k

(n− 2j)

k+1∏
j=−k

(n + 1− 2j)

.

This translates then readily into

tan(nx) =
tan(x)

a0 −
tan2(x)

a1 −
tan2(x)

a2 −
tan2(x)

. . .

;

since the ak’s eventually become zero, this is a finite continued fraction expansion.
Here is an example, which is of course equivalent to our previously given example:

tan(5x) =
tan(x)

1
5
−

tan2(x)

5
8
−

tan2(x)

8
7
−

tan2(x)

245
128
−

tan2(x)
128
35

.

The technique that we use is to guess the form of the numbers ak, by computing a
sufficient number of them with a computer and detecting the pattern. Of course, one
also has to give a proof, and for that, more guessing has to be done.

Define

s2k(z) :=
∑
N≥0

zN

2NN !

k+N∏
j=−k

(n− 2j)
N∏

j=1

(n + 1− 2j − 2k)

2k+N∏
j=0

(2j + 1)

,

s2k+1(z) :=
∑
N≥0

zN

2NN !

k+N+1∏
j=−k

(n + 1− 2j)
N∏

j=1

(n− 2j − 2k)

2k+N+1∏
j=0

(2j + 1)

.

These formal power series are in fact just polynomials, since the coefficients become
eventually zero. They were also guessed, using a computer. Further,

s0(z) =
∑
N≥0

zN

2NN !

N∏
j=0

(n− 2j)
N∏

j=1

(n + 1− 2j)

N∏
j=0

(2j + 1)

=
∑
N≥0

(
n

2N + 1

)
zN = f(z),



6 KAMILLA OLIVER AND HELMUT PRODINGER

and

s−1(z) =
∑
N≥0

zN

2NN !

N∏
j=1

(n + 1− 2j)
N∏

j=1

(n− 2j + 2)

N−1∏
j=0

(2j + 1)

=
∑
N≥0

(
n

2N

)
zN = g(z).

Now we will show that

sk+1(z) =
sk−1(z)− aksk(z)

z
,

by distinguishing two cases:

[zN ]
(
s2k−1(z)− a2ks2k(z)

)
=

1

2NN !

k+N∏
j=−k+1

(n + 1− 2j)
N∏

j=1

(n− 2j − 2k + 2)

2k+N−1∏
j=0

(2j + 1)

− (4k + 1)
1

2NN !

N∏
j=1

(n− 2j − 2k)
k+N∏

j=−k+1

(n + 1− 2j)

2k+N∏
j=0

(2j + 1)

=

k+N∏
j=−k+1

(n + 1− 2j)
N−1∏
j=1

(n− 2j − 2k)

2NN !
2k+N∏
j=0

(2j + 1)

×

×
[
(n− 2k)(4k + 2N + 1)− (4k + 1)(n− 2N − 2k)

]

=

k+N∏
j=−k+1

(n + 1− 2j)
N−1∏
j=1

(n− 2j − 2k)

2NN !
2k+N∏
j=0

(2j + 1)

2N(n + 2k + 1)

=

k+N∏
j=−k

(n + 1− 2j)
N−1∏
j=1

(n− 2j − 2k)

2N−1(N − 1)!
2k+N∏
j=0

(2j + 1)

= [zN−1]s2k+1(z);

the proof that

[zN ]
(
s2k(z)− a2k+1s2k+1(z)

)
= [zN−1]s2k+2(z)

is similar. Furthermore, for N = 0, the differences are zero, so that we get the claimed
recursions. (For the guessing, these recursions were used to compute a sufficient number
of these polynomials.)
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Consequently,

zf(z)

g(z)
=

zs0(z)

s−1(z)
=

zs0(z)

a0s0(z) + zs1(z)
=

z

a0 +
zs1(z)

s0(z)

=
z

a0 +
z

a1 +
zs2(z)

s1(z)

= . . . ,

which leads to the promised continued fraction. Notice again that the process stops
since n is a non-negative integer.
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