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HELMUT PRODINGER

Abstract. We study d–records in sequences generated by independent geometric random
variables and derive explicit and asymptotic formulæ for expectation and variance. Infor-
mally speaking, a d–record occurs, when one computes the d–largest values, and the variable
maintaining it changes its value while the sequence is scanned from left to right. This is
done for the “strict model,” but a “weak model” is also briefly investigated. We also discuss
the limit q → 1 (q the parameter of the geometric distribution), which leads to the model
of random permutations.

1. Introduction

Records (left–to–right maxima) of a sequence of elements x1 . . . xn are a well studied
subject [9]: The sequence is read from left to right, and whenever an element is encountered
which is larger than the previously seen ones, we speak of a record. The total number of
them is of interest. This is also of interest in Computer Science, see [7].

As we learn from [2], the notation of d–records is not uniform in the literature (e.g., [8]).
What works best for us in this context can be seen from the following simple program which
computes the d–largest element. We count how often the variable Cd changes its value. This
is what we will call number of d–records in this paper.

Algorithm 1 Computation of the d–record

Input: x1, . . . , xn sequence.
Output: Cd, which is the d–record of the sequence.
C1 ← −∞, . . . , Cd ← −∞
for k = 1 to n do
X ← xk
for i = 1 to d do

if X > Ci then
Ci ↔ X

end if
end for

end for

In this note, we assume that the elements n ∈ N are drawn independently from a geometric
distribution: P{X = k} = pqk−1, with p + q = 1. This is a situation for which we can still
derive attractive results, and consider the limit q → 1 as well. This leads us then to the
model of random permutations.
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We compute expectation and variance of the parameter “number of d–records;” the ques-
tion about the limiting distribution is left open here, although we strongly believe that it
is gaussian. Since we do not have access to the probabilities or a probability generating
function, this seems to be more difficult than the instance d = 1. This one appears first in
[10]; the limiting distribution was studied by Hwang and coauthors in [1].

We also study the instance of weak d–records, i.e., we replace X > Ci in the above
algorithm by X ≥ Ci. This is not very practical and leads to messy computations as well,
so we only compute the average value here.

A few abbrevations are useful: Q = 1/q, L = logQ.

Remark. The last value of the variable Cd for the computation of d–records is the
d–largest value. These were investigated in [5].

2. Expectation and variance

The random variable X (number of d–records) can be written as X = χ1 +χ2 + · · · , where
χk is one if the variable Cd (that represents the d–largest element) will eventually change to
the value k, zero otherwise. The expectation E(χk) is just the probability that this happens.
To compute this, note that d values must be ≥ k, but not all of them > k. The other
elements are smaller, and right from the element of interest, everything is allowed. In other
words, we want to count the weight (probability) of all the words of length n of the form
w1a1 . . . wdady, with letters ai ∈ {k, k + 1, . . . } (not all of them larger than k) and words
wi ∈ {1, . . . , k − 1}∗, y ∈ {1, 2, . . . }∗:

E(X) = [zn]
∑
k≥1

[
(qk−1z)d − (qkz)d

] 1

[1− z(1− qk−1)]d
1

1− z

= [zn]
∑
k≥0

(qkz)d(1− qd) 1

[1− z(1− qk)]d
1

1− z
.

(We use the customary notation [zn]f(z) for the coefficient of zn in the power series f(z).)

Now we use the substitution z = w/(w − 1). The tutorial [6] is a good reading for the
type of analysis that is done here. The paper [4] explains this substitution in more detail;
of particular interest to us here is the formula

[zn]f(z) = (−1)n[wn](1− w)n−1f
(
w/(w − 1)

)
,

which can be proved for instance by formal residue calculus. Then

E(X) = [wn](−1)n+d(1− qd)(1− w)n
∑
k≥0

(qkw)d
1

(1− wqk)d

= (−1)n+d(1− qd)
n∑
j=0

[wn−j](1− w)n · [wj]
∑
k≥0

(qkw)d
1

(1− wqk)d

= (−1)d(1− qd)
n∑
j=d

(
n

j

)
(−1)j[wj]

∑
k≥0

(qkw)d
1

(1− wqk)d

= (−1)d(1− qd)
n∑
j=d

(
n

j

)
(−1)j[wj]

1

1− qj
wd

1

(1− w)d
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= (−1)d(1− qd)
n∑
j=d

(
n

j

)
(−1)j

1

1− qj

(
j − 1

d− 1

)
= (−1)d(1− qd) 1

2πi

∫
C

(−1)nn!

z(z − 1) . . . (z − n)

(z − 1) . . . (z − d+ 1)

(d− 1)!

1

1− qz
dz.

The last step (writing the alternating sum as a contour integral with a contour encircling
the points 1, . . . , n) is prominent in Rice’s method, see [3].

The asymptotic evaluation now proceeds by looking at the residues outside of this curve,
taking them with a negative sign. Here, the main contributions come from z = 0:

(1− qd)[z−1]
1

(1− z
d
) . . . (1− z

n
)

1

1− qz
∼ (1− qd)[z−1]

(
1 + z(Hn −Hd−1)

) 1

Lz

(
1 +

Lz

2

)
∼ (1− qd) 1

L

(
Hn −Hd−1 +

L

2

)
∼ (1− qd)

(
logQ n+

γ

L
− Hd−1

L
+

1

2

)
.

The numbers Hm := 1 + 1
2

+ · · · + 1
m

that appear here are called harmonic numbers ; the

numbers H
(2)
m := 1+ 1

22 + · · ·+ 1
m2 will appear later. For d = 1 we find the old value (cf. [10])

p
(

logQ n+
γ

L
+

1

2

)
.

And now, for the variance, let us compute E(χkχl) for k < l, which is the probability that
the variable Cd changes to k, and (later) to l. So, there must be 1 ≤ i ≤ d values between k
and l − 1, and not all of them > k, and the remaining d− k are ≥ l. Together with i other
values, which are also ≥ l, we have d values ≥ l; not all of them can be > l. So∑

1≤k<l

E(χkχl) = [zn]
∑

1≤k<l

d∑
i=1

(
d

i

)(
[(qk−1 − ql−1)z]i − [(qk − ql−1)z]i)

) 1

[1− z(1− qk−1)]d

×
(
(ql−1z)d − (qlz)d

) 1

[1− z(1− ql−1)]i
1

1− z

= (1− qd)[zn]
∑

0≤k<l

d∑
i=1

(
d

i

)(
[(qk − ql)z]i − [(qk+1 − ql)z]i

) 1

[1− z(1− qk)]d

× (qlz)d
1

[1− z(1− ql)]i
1

1− z

= (1− qd)[zn]
∑

0≤k<l

d∑
i=1

(
d

i

)
[(qk)z]i

(
(1− ql−k)i − (q − ql−k)i)

) 1

[1− z(1− qk)]d

× (qlz)d
1

[1− z(1− ql)]i
1

1− z

= (1− qd)[wn](1− w)n
∑

0≤k, l≥1

d∑
i=1

(
d

i

)
(−1)n+d+i

(
(1− ql)i − (q − ql)i)

)
× [(qk)w]i

[1− wqk]d
(qk+lw)d

[1− wqk+l]i
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= (1− qd)[wn](1− w)n
∑

k≥0, l≥1

d∑
i=1

(−1)n+d+i

(
d

i

) i∑
λ=0

(
i

λ

)
(−1)λqλl(1− qi−λ)

× [(qk)w]i

[1− wqk]d
(qk+lw)d

[1− wqk+l]i

= (1− qd)
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(1− qi−λ)

n∑
j=i+d

(
n

j

)
(−1)j

1

1− qj

× [wj]
∑
l≥1

qλl
wi

[1− w]d
(qlw)d

[1− wql]i

= (1− qd)
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(1− qi−λ)

n∑
j=i+d

(
n

j

)
(−1)j

1

1− qj

×
j+λ−i∑
m=d+λ

∑
l≥1

[wj+λ−m]
wi

[1− w]d
· [wm]

(qlw)d+λ

[1− wql]i

= (1− qd)
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(1− qi−λ)

n∑
j=i+d

(
n

j

)
(−1)j

1

1− qj

×
j+λ−i∑
m=d+λ

1

Qm − 1

(
j + λ−m− i+ d− 1

d− 1

)(
m− d− λ+ i− 1

i− 1

)

= (1− qd)
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(1− qi−λ)

n∑
j=i+d

(
n

j

)
(−1)j

1

1− qj

×
j−d−i∑
m=0

1

Qm+d+λ − 1

(
j −m− i− 1

d− 1

)(
m+ i− 1

i− 1

)
.

This is explicit, but we need the asymptotic behaviour of it, again with Rice’s method.

Define

ψ(j) =

j−d−i∑
m=0

1

Qm+d+λ − 1

(
j −m− i− 1

d− 1

)(
m+ i− 1

i− 1

)
=

∑
m≥0

1

Qm+d+λ − 1

(
j −m− i− 1

d− 1

)(
m+ i− 1

i− 1

)
−

∑
m+d−j+i−1≥0

1

Qm+d+λ − 1

(
j −m− i− 1

d− 1

)(
m+ i− 1

i− 1

)
=

∑
m≥0

1

Qm+d+λ − 1

(
j −m− i− 1

d− 1

)(
m+ i− 1

i− 1

)
−

∑
m≥0

1

Qm+j−i+λ+1 − 1

(
−m+ d− 2

d− 1

)(
m− d+ j

i− 1

)
.
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So

ψ(z) =
∑
m≥0

1

Qm+d+λ − 1

(
z −m− i− 1

d− 1

)(
m+ i− 1

i− 1

)
−

∑
m≥0

1

Qm+z−i+λ+1 − 1

(
−m+ d− 2

d− 1

)(
m− d+ z

i− 1

)
.

With this, we can write∑
1≤k<l

E(χkχl) = (1− qd)
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(1− qi−λ)

× 1

2πi

∫
C

(−1)nn!

z(z − 1) . . . (z − n)

1

1− qz
ψ(z)dz.

There is a triple pole at z = 0, and the computation of the residue (with negative sign) is
extremely tedious. We spare the reader the details.

Ξ = −(1− qd)
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(1− qi−λ)

× [z0]

(
1 + zHn + z2H

2
n +H

(2)
n

2

)
1

Lz

(
1 + z

L

2
+ z2L

2

12

)
ψ(z)

= (1− qd)2H
2
n +H

(2)
n

2
− (1− qd)2Hd−1 − γ

L2
Hn

− (1− qd)
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(1− qi−λ) 1

L
[z1]ψ(z),

and

[z1]ψ(z) =
∑
m≥0

1

Qm+d+λ − 1

(
m+ i− 1

i− 1

)
[z1]

(
z −m− i− 1

d− 1

)
−

∑
m≥d−1

1

Qm−i+λ+1 − 1

(
−m+ d− 2

d− 1

)
[z1]

(
m− d+ z

i− 1

)

+ L
∑

m≥d−1

Qm−i+λ+1

(Qm−i+λ+1 − 1)2

(
−m+ d− 2

d− 1

)(
m− d
i− 1

)
=

∑
m≥0

1

Qm+d+λ − 1

(
m+ i− 1

i− 1

)(
−m− i− 1

d− 1

)
(Hm+d−1 −Hm)

−
∑

m≥d+i−1

1

Qm−i+λ+1 − 1

(
−m+ d− 2

d− 1

)(
m− d
i− 1

)
(Hm−d −Hm−d−i+1)

− 1

Qd−i+λ − 1
(−1)d−1+iHi

−
∑

d≤m≤d+i−2

1

Qm−i+λ+1 − 1

(
−m+ d− 2

d− 1

)
(m− d)!(d−m+ i− 2)!(−1)d−m+i

(i− 1)!
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+ L
∑

m≥d−1

Qm−i+λ+1

(Qm−i+λ+1 − 1)2

(
−m+ d− 2

d− 1

)(
m− d
i− 1

)
.

In this sum, the term for i = d, λ = 0, m = d− 1 must be replaced by

Hd−1

L
+

1

2
.

For the final computation of the variance, we must take Ξ twice (because of the symmetry
k < l resp. k > l), add the diagonal terms k = l, which amounts to the expectation, and
subtract the square of the expectation. Apart from the ungainly constant, that we no longer
mention explicitly, we find that the contribution of log2 n cancels out, and the term logQ n
has as a factor

−2(1−qd)2Hd−1 − γ
L

+(1−qd)−(1−qd)22
(γ
L
−Hd−1

L
+

1

2

)
= (1−qd)−(1−qd)2 = qd(1−qd).

For d = 1, this reduces to pq, as it should (compare [10]).

In all these problems, there are also poles at 2πik/L for k ∈ Z, k 6= 0. They contribute
small periodic functions (“fluctuations”). We refrain from computing them explicitly, as
they lead to very unpleasant terms, in the style of the previous constant.

Summarizing, we sketched the proof of the following theorem.

Theorem 1. The parameter “number of changes of variable Cd” (= number of d–records),
for random strings of length n, produced by independent geometric random variables, has the
following asymptotic equivalents for n→∞ for expectation resp. variance:

Expectation ∼ (1− qd)
(

logQ n+
γ

L
− Hd−1

L
+

1

2

)
+ δE(logQ n),

Variance ∼ qd(1− qd) logQ n+ constant + δV (logQ n).

The (small) periodic functions δE(x), δV (x) could be determined in principle in terms of their
Fourier coefficients. The term labelled “constant” could be collected from the computations
sketched above.

3. The weak model: expectation

Now we think about a new element bubbling down as before. If the one that is to be
compared with the variable for the d–record is equal, we also count that as a change (compare
the Introduction). Note that if −∞ is replaced by −∞ (at the beginning of the sequence),
we do not count this.

So m ≥ d elements must have been ≥ k, but at most d− 1 of them > k:

E(X) = [zn]
∑
k≥1

∑
m≥d

d−1∑
λ=0

(
m

λ

)
(zqk)λ(zpqk−1)m−λ

1

[1− z(1− qk−1)]m
1

1− z

=
n∑
j=d

(
n

j

)
(−1)j[wj]

∑
m≥d

(−1)m
d−1∑
λ=0

(
m

λ

) ∑
k≥0

(wqk+1)λ(wpqk)m−λ
1

[1− wqk]m

=
n∑
j=d

(
n

j

)
(−1)j[wj]

∑
m≥d

(−1)m
d−1∑
λ=0

(
m

λ

)
1

1− qj
(wq)λ(wp)m−λ

1

[1− w]m
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=
n∑
j=d

(
n

j

)
(−1)j

1

1− qj
[wj]

∑
m≥d

d−1∑
λ=0

(
m

λ

)(q
p

)λ( pw

w − 1

)m
︸ ︷︷ ︸

ψ(j)

.

In order to evaluate ψ(j), let us do a little calculation:

Ξ =
∑

0≤λ<d

∑
m≥d

(
m

λ

)
aλbm

=
∑

0≤λ<d

aλ
[

bλ

(1− b)λ+1
−

∑
m<d

(
m

λ

)
bm

]

=
1

1− b
1−

(
ab

1−b

)d
1− ab

1−b
−

∑
0≤λ≤m<d

(
m

λ

)
aλbm︸ ︷︷ ︸

Td

.

Then T0 = 0 and

Td+1 = Td +
∑

0≤λ≤d

(
d

λ

)
aλbd = Td + (1 + a)dbd,

so

Td =
∑

0≤h<d

(
(1 + a)b

)h
=

1− ((1 + a)b)d

1− (1 + a)b
.

Therefore

Ξ =
1

1− b
1−

(
ab

1−b

)d
1− ab

1−b
− 1− ((1 + a)b)d

1− (1 + a)b
=

((1 + a)b)d −
(
ab

1−b

)d
1− (1 + a)b

.

Let us use this with a = q
p

and b = pw
w−1

. Then 1 + a = 1
p
, (1 + a)b = w

w−1
, 1− b = w−1−pw

w−1
=

1−qw
1−w , and ab

1−b = qw
qw−1

:

ψ(j) = [wj]
( w
w−1

)d −
(

qw
qw−1

)d
1− w

w−1

= (−1)d[wj](1− w)
[( w

1− w

)d
−

( qw

1− qw

)d]
= (−1)d

[(
j − 1

d− 1

)
−

(
j − 2

d− 1

)
− qj

(
j − 1

d− 1

)
+ qj−1

(
j − 2

d− 1

)]
= (−1)d

[(
j − 1

d− 1

)
(1− qj)−

(
j − 2

d− 1

)
(1− qj−1)

]
.

So

E(X) =
n∑
j=d

(
n

j

)
(−1)j

1

1− qj
(−1)d

[(
j − 1

d− 1

)
(1− qj)−

(
j − 2

d− 1

)
(1− qj−1)

]



8 H. PRODINGER

= (−1)d
n∑
j=d

(
n

j

)
(−1)j

(
j − 1

d− 1

)
−

n∑
j=d

(
n

j

)
(−1)j

1

1− qj

(
j − 2

d− 1

)
(1− qj−1)

= 1− (−1)d
n∑
j=d

(
n

j

)
(−1)j

1− qj−1

1− qj

(
j − 2

d− 1

)
= 1− (−1)d

1

2πi

∫
C

(−1)nn!

z(z − 1) . . . (z − n)

1− qz−1

1− qz

(
z − 2

d− 1

)
∼ 1− (−1)d[z−1]

n!Γ(−z)
Γ(n+ 1− z)

1− qz−1

1− qz

(
z − 2

d− 1

)
∼ 1 + d

p

q
logQ n−

1

L

(
(Hd−1 − γ)d

p

q
+
p

q
− dp

q

)
− d

2

(
1 +

1

q

)
.

That matches for d = 1 with the old result [10].

Theorem 2. The parameter “number of changes of variable Cd” (= number of d–records,
weak model) for random strings of length n, produced by independent geometric random
variables, has the following asymptotic equivalent for n→∞ for its expectation:

Expectation ∼ d
p

q
logQ n−

1

L

(
(Hd−1 − γ)d

p

q
+
p

q
− dp

q

)
− d

2

(
1 +

1

q

)
+ 1 + δEW (logQ n).

4. The permutation model

This model is obtained by taking the limit q → 1. Doing this for

E(X) = (−1)d(1− qd)
n∑
j=d

(
n

j

)
(−1)j

1

1− qj

(
j − 1

d− 1

)
(strict model), we obtain

E(X) = (−1)dd
n∑
j=d

(
n

j

)
(−1)j

1

j

(
j − 1

d− 1

)
Doing this for

E(X) = 1− (−1)d
n∑
j=d

(
n

j

)
(−1)j

1− qj−1

1− qj

(
j − 2

d− 1

)

(weak model), we obtain

E(X) = 1− (−1)d
n∑
j=d

(
n

j

)
(−1)j

j − 1

j

(
j − 2

d− 1

)
.

The two expressions coincide, which can be directly seen by the following computation:

(−1)dd
n∑
j=d

(
n

j

)
(−1)j

1

j

(
j − 1

d− 1

)
− 1 + (−1)d

n∑
j=d

(
n

j

)
(−1)j

j − 1

j

(
j − 2

d− 1

)
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= (−1)d
n∑
j=d

(
n

j

)
(−1)j

(
j − 1

d− 1

)
− 1

= (−1)dn

(
n− 1

d− 1

) n∑
j=d

(
n− d
j − d

)
(−1)j

1

j
− 1

= n

(
n− 1

d− 1

) n−j∑
j=0

(
n− d
j

)
(−1)j

1

j + d
− 1

= n

(
n− 1

d− 1

)
1

d
(
n
d

) − 1 = 0.

The permutation model itself is very easy, and one derives immediately the probability
generating function

n∏
k=d

(k − d
k

+
xd

k

)
,

from which the expectation comes out as d(Hn−Hd−1) and the variance as d(Hn−Hd−1)−
d2(H

(2)
n −H(2)

d−1). From this we derive the formula

(−1)d
n∑
j=d

(
n

j

)
(−1)j

1

j

(
j − 1

d− 1

)
= Hn −Hd−1.

This is not too hard to do directly and we leave it as an exercise. However, the analogous
limit concerning the variance is

d
d∑
i=1

(
d

i

)
(−1)d+i

i∑
λ=0

(
i

λ

)
(−1)λ(i− λ)

n∑
j=i+d

(
n

j

)
(−1)j

1

j
×

×
j−d−i∑
m=0

1

m+ d+ λ

(
j −m− i− 1

d− 1

)(
m+ i− 1

i− 1

)
=
d2

2

[
(Hn −Hd−1)

2 − (H(2)
n −H

(2)
d−1)

]
.

A direct proof of this is probably messy, but well within the reach of Carsten Schneider’s
impressive software Sigma [11].
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