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Abstract. This short note presents a summary of the scientific contributions of
Rainer Kemp (1949–2004) in the area of discrete mathematics, combinatorial enumer-
ation, and analysis of algorithms. A complete bibliography of Kemp’s publications is
included.

Rainer Kemp, Professor of computer science at the Johann Wolfgang Goethe Uni-
versity of Frankfurt, passed away on May 14, 2004, eventually yielding to an illness
that he had been fighting for one full year. His research career had started more
than thirty years earlier: he defended his thesis supervised by Günter Hotz in 1973
and, already in 1972, he counted amongst the very few contributors to the first pan–
European conference on theoretical computer science, the by now famous ICALP. In 32
years of academic scientific activity, Kemp wrote altogether 53 publications, of which
a complete list appears in the bibliography section of this note.

Kemp’s research started with problems in the theory of formal languages, a by then
prevalent branch of computer science in Europe. He was especially interested in “syn-
tax analysis” or parsing and, even after switching subjects, would return to formal
languages every so often. However, soon after his beginnings, his interests started to
drift towards discrete mathematics, especially combinatorial enumeration and asymp-
totic methods, with many of the problems he considered being motivated by analysis of
algorithms. It is in this area that he published the vast majority of his papers. At the
same time, Kemp played an important rôle in organizing, jointly with the two senior
authors of this note (P.F. and H.P.) the first three meetings held at Schloß Dagstuhl
in 1993, 1995, and 1997. These meetings to which he dedicated much of his energies
would play a crucial rôle in shaping up a community now referred to as “AofA”, a
nickname for Analysis of Algorithms. The AofA community could accordingly develop
a strong base in Europe as well as numerous ramifications worldwide, and we all are
greatly indebted to Kemp for his commitment.

We analyse below some of Kemp’s papers and have chosen to organise the presenta-
tion of his works into ten categories, to which is added a separate section on his book
published by Teubner–Wiley in 1984. These works all bear Kemp’s mark: they are
systematic, thorough, sometimes even extreme in their calculational aspects. They are
testimonies of Kemp’s meticulous and rigorous attitude to scientific activity. As we all
know, technical papers invariably contain minor errors and misprints—even a glance
at the collected papers of a purist like G.H. Hardy will confirm this fact. In the case of
Kemp, we are not aware of more than a handful such things in the whole of his works.

Kemp’s sense of accuracy and completeness may render his works difficult to access
by the uninitiated. This should not hide the fact that they contain a number of gems
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based on deep insights. At a time where several chapters of computer science are
drifting towards a “quick–and–easy” publication attitude, many of Kemp’s works can
serve as model as what a carefully thought scientific production should be. Also, many
of them contain highly original ideas, whose power would only be revealed in later
years—Kemp in many ways was a precursor, though he was never to become, by his
own choosing, a school builder. For instance, in the first work of Kemp that we discuss
below, the one relative to register allocation, he was the very first to recognize explicitly
the importance of the Mellin transform. Kemp’s work and lectures served as an eye–
opener: nowadays, Mellin related techniques have become a standard apparatus of the
average–case and probabilistic analysis of algorithms, and probably about a hundred
papers in the area appeal to it in some way. (P.F. remembers his first encounter with
Kemp around 1979. Kemp: “This is a Mellin transform!”. Flajolet: “Oh! What is
this?”. Then Kemp went on to explain. . . )

Leftist trees is another area where Kemp made spectacular advances. In his first
edition of The Art of Computer Programming, Volume 3, published in 1973, Knuth
had an innocuous looking “exercise”:

5.2.4.34. [M47 ] How many leftist trees with N nodes are possible, ignoring the KEY
values? [The sequence begins 1, 1, 2, 4, 8, 17, 38, . . . ; is there a simple asymptotic
formula?]

Kemp solved that one brilliantly fourteen years after it had first been posed as an open
problem. It is worth noting that the ranking “[M47 ]” places this problem amongst
perhaps a dozen of comparable difficulty throughout the 2,000 odd pages of Knuth’s
magnum opus. It appears that only three or four of that level of difficulty have been
solved so far (e.g., sorting networks, the binary gcd algorithm, the two–stacks problem).
Despite his usual soberness and modesty, Kemp is definitely to be remembered for that
feat.

Much of Kemp’s work was otherwise dedicated to the analysis of major parame-
ters of trees. Trees of algorithmic theory can be broadly classified into three groups:
the “square–root” trees (related to combinatorial tree models as well as to branching
processes), the “logarithmic” trees (associated to order structures), and the digital trees
or “tries” (based on the digital structure of data). Kemps’ work was almost entirely
dedicated to the first type, which is also the one most relevant to formal languages,
automata, and parsing.

Kemp will also be remembered for having been the first writer ever to have dedicated
a book solely to the analysis of algorithms. He was of course preceded by Knuth, but the
purpose of Knuth’s books is largely the classification and formalisation of fundamental
algorithms and data structures, with analytic techniques being only one of the aspects
considered. Kemp’s example was to be followed by a series of other works by later
researchers so that, in this area, we now have treatises by Hofri [G], Mahmoud [K, L],
Sedgewick–Flajolet [P], and Szpankowski [R].

Rainer Kemp’s ideas will survive, not only by the strength of his major results, by
his articles published in many of the primary journals of computer science, but also by
the presence of his book on the shelves of many university departments.
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1. Register function and arithmetic Expressions

That was a well–known open problem that ended in a tied race between Flajolet,
Raoult, Vuillemin [F], and Kemp [5]. If a binary tree is used to represent an arithmetic
expression, what is the optimal (i.e., minimal) number of additional registers to evaluate
the tree? The strategy is to always evaluate the more difficult subtree first—this was
discovered by Ershov and published in the very first volume of Communications of the
ACM [E]. In this way, there is a recursive labeling of the nodes of the tree. Kemp was
able to show that the average of this parameter, provided that all binary trees with n
internal nodes are equally likely, admits an explicit form, namely

2 +
n + 1(

2n
n

) ∑
k≥1

(
1 + v2(k)

)[(
2n

n + 1− 4k

)
− 2

(
2n

n− 4k

)
+

(
2n

n− 1− 4k

)]
,

where v2(k) is the number of trailing zeros in the binary representation of k.
From this, using approximations for binomial coefficients and the Mellin transform

(in the version presented in Knuth’s Volume 3) allowed Kemp to evaluate this quantity
asymptotically, leading to log4 n+δ(log4 n)+o(1), where δ(x) is a periodic function with
explicitly given Fourier coefficients. Kemp’s discovery of oscillations in an asymptotic
expansion arising from combinatorics and analysis of algorithms was anticipated by
works of Knuth (based on suggestions by De Bruijn). However, Knuth’s fluctuations
are relative to models that involve a superposition of basic patterns at different scales,
in fact, powers of 2. (This is presented in the first edition of Volume I of The Art of
Computer Programming, where a Mellin-like technique is applied to digital trees and
radix-exchange sort; see p. 131 of [I].) Kemp’s oscillations are quite different in that
their amplitude is “visible” (as opposed to a mere 10−5 in the case of radix-exchange
sort). More importantly, they would appear to be related to fluctuations present in
many number representation systems. We now have a fair understanding of these subtle
phenomena. Kemp’s work served to draw attention to an interesting area of research
that lies somewhere between asymptotic analysis and basic analytic number theory.

A second strategy for evaluating a binary tree (the corresponding arithmetic expres-
sion) traverses the tree in postorder, using a stack to store intermediate results. Here,
the stack size (the left–height) of the tree is equal to the maximum number of cells of
the stack used by the algorithm. The research of Kemp related to this parameter will
be discussed in Section 3.

In [17] Kemp invented a different class of algorithms for the evaluation of arith-
metic expressions represented by binary trees. Each algorithm makes use of an input–
restricted deque of length k and an auxiliary storage. These algorithms can be con-
sidered as generalization of the stack based strategy mentioned before. Kemp proved
that the number of binary trees with n leaves which can be processed by means of
a deque of length k and an auxiliary storage of size i is equal to the number of all
trees with n leaves which can be processed by means of a stack of maximum length
(k+1)(i+1)−1. The corresponding sets are different. Additionally, paper [17] contains
a detailed average case analysis of the space complexity of the new class of algorithms.

Kemp’s paper together with the parallel one by Flajolet, Raoult, and Vuillemin pre-
sented the first analysis of register allocation in the average case. In fact, Kemp’s
paper contains, only slightly hidden, a complete analysis of the associated probability
distribution. It was to be followed by works of several authors including Kirschenhofer
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and Prodinger [H]. It is worthy of note that the register function is truly an important
structural parameter of trees. In this capacity, it is to be encountered in the statistical
study of river networks, being well known to students in hydrogeology under the name
of “Horton–Strahler number.” It has been otherwise encountered by Yekutieli and
Mandelbrot [T] in the study of self–similar branching systems, where phenomena anal-
ogous to those first uncovered by Kemp were later found to surface. It has been used in
image synthesis, where “real” trees (the ones we see everyday) are to be modelled and
graphically rendered by computer programs. It is especially pleasant to observe in this
case that a fundamental question raised by the nascent science of computing turned out
to have resonances in so many seemingly unrelated areas of research. Kemp’s research
on the subject places him as an important link in this chain.

2. Leftist trees

Kemp solved an open problem from Knuth in [24]: the enumeration of leftist trees.
A leftist tree is a binary tree such that the distance from any node x to any of the
leaves in the subtree having x as the root is minimal for its leftmost leaf. Denote by
tn the number of leftist trees with n internal nodes and the generating function

H(z) :=
∑
n≥1

tnz
n.

Kemp derived the implicit equation

H(z) = z +
1

2
H2(z) +

1

2

∑
k≥1

T 2
k (z)

with

T1(z) = z, T2(z) = zH(z), Tk+1(z) = Tk(z)
[
H(z)−

∑
1≤i<k

Ti(z)
]
, k ≥ 2.

From this, he was able to show, by appealing to the Darboux–Pólya method of complex
asymptotic analysis, that around η = 0.363704 . . . , H(z) behaves like a square root:

H(z) = H(η) +
∑
k≥1

bk(η − z)k/2.

Consequently,

tn = [zn]H(z) ∼ 0.250363 . . . (2.749487 . . . )nn−3/2.

In a further paper [30] Kemp went on and considered the average of several additive
parameters of leftist trees. Examples are left/right branch length, (free) external path
length, left/right path length. In [47], the “leftist” concept was applied to 2–3–trees
(as opposed to binary trees, as before). Surprisingly, the number of these objects is
counted by Catalan numbers, and thus eventually related to binary trees. Accordingly,
Kemp finds a bijection between leftist 2–3–trees and binary trees, each with n nodes.
In [46, 48], the concept has been generalized further to simply generated trees. The
latter is an important and very general class of trees introduced by Meir and Moon in
the mid 1970s [N]. In [49], the previous correspondence “leftist 2–3–trees versus binary
trees” has then been lifted to a great level of generality. Proofs are both analytic and
bijective.
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As already signalled in the introduction, Kemp’s solution to Knuth’s problem was in
its time a tour de force. His work is nowadays to be regarded as a component belonging
to a general stream of ideas. The goal is to extract asymptotic information from com-
binatorial counting sequences in cases where no explicit expression is available neither
for the sequence itself nor for its generating function. The works of Kemp in this area
can serve as a link between Pólya’s original work [O] on the enumeration of chemi-
cal isomers and present–day research whose aim is to categorize functional equations
arising from combinatorics and relate them to asymptotic–probabilistic properties.

3. Stack size and Height

The stack size of a binary tree can be easily understood as follows: For each path from
the root to the leaves, count only the left edges. (The terminology is adequate since
this parameter measures the memory cost incurred by a traversal, which is achieved by
a stack.) The stack size is then the maximum of these numbers. Equivalently, if one
considers the corresponding planar tree (via the rotation correspondence), then stack
size transforms into height.

Such a tree is translated into a Dyck path (non–negative lattice path). In [11], the
following question is addressed: what is the level of this path, after t units of time, if
t = 2ρn, and a constant 0 < ρ < 1. The average level is found to be proportional to

4

√
ρ(1−ρ)

π

√
n,

and higher moments as well as explicit formulæ are also obtained. The paper [8] is an
earlier version of that, which additionally contains an extension of the classical paper
by de Bruijn, Knuth and Rice [D] about the height of planar trees (=stack size of
binary trees), in terms of higher moments and the distribution function (given by an
elliptic Θ-function).

In [14], this study is continued. Kemp is interested in local maxima (“max–turns”)
resp. minima (“min–turns”) in planar trees. He shows that the j–th max/min–turn is

asymptotic to 8
√

j
2π
± 1, for fixed j and large n. More refined results are available.

Dyck paths related to trees are “closed” (in the sense that they return to zero after
2n steps). In [12] Kemp considers open paths (non–negative); the level at time 2n is
not specified. He is again interested in the height (maximal level) of these objects.
Result: the average is asymptotic to (ln 2)

√
2πn.

In [9], planar trees with root degree r (fixed) are considered. The height of general
planar trees was determined in the above mentioned paper by de Bruijn, Knuth and
Rice. Now Kemp considers the height of this subclass. This is a major computational
effort, and the average is determined to be asymptotic to

√
πn+1− r

2
, so the parameter

r occurs only in the second order term. In [16], he fixes another parameter: the number
m of leaves. It is natural to let m grow with n, like m = ρn, with 0 < ρ < 1. Result:
the average height is asymptotic to

√
π(ρ−1 − 1)

√
n.

In [32], the study of the stack size of binary trees was continued. The value of the
stack size occurs at the root, when one labels the nodes recursively according to a
simple rule. Now information about nodes with certain values attached is derived, in
particular the number of those nodes (called “critical” nodes) where both subtrees are
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equally difficult (in terms of stack size). Surprisingly enough, there is a proportion of
π2/6− 1 of critical nodes, asymptotically.

The paper [7] also studies the (average) stack size of trees, but this time the trees
are the derivation trees generated by linear context–free grammar. Such grammars are
reasonably manageable (not too different from regular languages), and lead, in terms
of generating functions, to matrices, so that the Perron–Frobenius machinery can be
applied. Consequently, the average stack size is always of the form nF (n)+G(n)+s.o.t.,
with periodic functions F (n) and G(n).

Kemp’s line of research started, as already said, from the analytic treatment of the
analysis height of Dyck paths by de Bruijn, Knuth, and Rice. Kemp showed that in
fact the methods could be extended, sometimes at the expense of considerable tech-
nical efforts, and then the estimates could be greatly refined. Some of his results
were extended by Louchard [J], who dealt with multiplicatively weighted paths—these
are of immediate relevance to a wide class of “amortized” (average–case) complexity
analyses. Louchard succeeded in developing a useful probabilistic intuition, based on
Brownian motion and Gaussian processes, which provides an easier access to several as-
ymptotic phenomena of the type earlier considered by Kemp, whenever only dominant
and subdominant regimes are sought.

4. Formal Languages and Enumeration

Let L be a formal language over an alphabet X. The quantity

d(L) := lim
n→∞

number of words of length ≤ n in L

1 + |X|+ · · ·+ |X|n

is called the asymptotic density of L, provided it exists. It was known, largely from the
works of Berstel in the early 1970’s [C], that regular languages have rational asymptotic
densities, while unambiguous context–free languages have algebraic ones. However, for
an inherently ambiguous context–free language, the situation was unclear. Kemp [10]
constructed the first example of a context–free language with a non–algebraic density.
The main ingredient here is the series

F (z) =
∑
λ≥0

z−2λ

(a so–called “Fredholm series”). The function F (z) is known to be transcendental for
z being a natural number > 1.

In [15], Kemp considered the set S = {w ∈ Σ∗ | w = wR} of all palindromes over an
alphabet Σ. In particular, he was interested in the number of words of length n in S2.
To cite one result, here is the generating function of these numbers:

1 +
1

4

√
|Σ|

∑
j≥1

ϕ−1(j)zj

[ (
1 +

√
|Σ|

)2(
1−

√
|Σ|zj

)2 −
(
1−

√
|Σ|

)2(
1 +

√
|Σ|zj

)2

]
,

with the function ϕ−1 (related to Euler’s totient function) defined by

ϕ−1(n) =
∏

p|n, p prime

(1− p).

Möbius inversion plays an important rôle here. The asymptotic density of S2 can also
be determined (it is zero for alphabets of size at least 2).
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Kemp’s contributions in this area are quite spectacular. He solved a very natural
conjecture in formal language theory, in a line of problems launched some ten years ear-
lier by Berstel, Schützenberger and others. The connection between formal generation
mechanisms and the associate density phenomena has witnessed some revived interest
recently. In this area, Kemp was undeniably a pioneer. From a methodological point of
view, it is interesting to observe the way certain conjectures in formal languages could
find solutions by way of number theory and mathematical analysis.

5. Other combinatorial papers

The paper [31] appeared eight years after it was conceived; it was somehow lost
in the jungle of the editorial office–perhaps the journal’s editors should figure in the
Guiness Book of Records for this feat. Kemp considers ordered (=planar) trees: Let
Bn,k,r be the number of all trees with n nodes, root–degree r and height ≤ k, and Qn,k,r

the number of trees with n nodes, height k and exactly r nodes achieving that height
(having a distance k from the root and no children), then

Qn,k,r = Bn+1,k,r+1 −Bn+1,k,r + Bn,k,r−1

(later, Strehl found a bijective proof of this [Q]). Kemp derives explicit albeit very
complicated expressions for these quantities. On an asymptotic level, he shows that
the probability that a tree has a height attained r times approaches 2−r as n → ∞.
Moments of this distribution are also evaluated.

In [29], Kemp constructs a bijection between:

— t–ary trees with tk + 1 nodes and stack size s + 1 and
— ordered trees with (t− 1)k + 1 nodes, allowed node degrees d ≡ 0 mod (t− 1)

and stack size s.

A somewhat similar paper is [35]. Here, the bijection is between

— t–ary trees with tk + 1 nodes and stack size < 2t and
— t–ary trees with tk + 1 nodes and maximal height.

In [37], Kemp considers 0–balanced ordered trees (=all leaves are on the same level):
the number of these with n nodes, m leaves, and height h is given by

[tn−m−h+1]
(
1 + t + · · ·+ th−2

)m−1
.

The analysis goes along the lines of runs of ones in binary strings. The average height
of such trees with n nodes is asymptotically ∼ log2 n + periodic function(log2 n). The
average number of leaves is asymptotic to n/2; the average (external) path length to
1
2
n log2 n; the average degree of the root to 2.
The last paper of Kemp [50] appeared in print shortly after he deceased. It presents

a generalized class of balanced trees by introducing b–balanced trees: An ordered tree
of height h is called b–balanced if all its leaves have a level ` with h − b ≤ ` ≤ h.
Kemp computed asymptotic equivalents to the number of all b–balanced trees with n
nodes and of all such trees with height h. Furthermore, assuming that all b–balanced
ordered trees of size n are equally likely, the average height of such trees together with
the corresponding variance is derived.

In [34], a bijection is constructed between the multidimensional binary trees of Sec-
tion 7 and monotonically labelled ordered trees.
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These papers of Kemp shed some light on an important component of his personal
research programme—Kemp was otherwise not prone to philosophizing on his own
results. The general line is that computer science, algorithms and data structures
in particular, provides us with a healthy diversity of tree types. Most have quite
interesting combinatorial properties. Then, the corresponding enumerative problems
should also be of interest per se. It is in this light that Kemp’s works on digital trees
(“tries”), binary search trees, and multidimensional trees are to be understood.

6. Additive weights of trees

Kemp examines additive weights of various kinds of trees [23, 22, 28]. His weights
w are recursively defined by

w(t) = g(λ, n, m) +
∑

1≤i≤λ

(
ai(λ, ni, mi)w(ri) + fi(λ, ni, mi)

)
;

here, λ is the degree of the root, n the number of nodes, m the number of leaves, i
refers to the i–th subtree, and g, ai, fi are “simple” auxiliary functions. For instance,
upon specialization, one gets parameters like (total, internal, external) path length,
total degree path length, number of nodes of a fixed degree and many more. The trees
considered are, quite generally, simply generated families of trees, as introduced by
Meir and Moon.

There are many general and special results, too many to be listed here; particular
interest is in the average weight over trees from the family with n nodes. In [21] Kemp
presents a generalization of his approach where now the trees under consideration can
be specified by their total number of nodes n and the number of nodes mj of degree
dj, 1 ≤ j ≤ `. Thus, the former model results from ` = 1 and d1 = 0. In this
framework he derives the average behavior of certain path lengths for simply generated
families of trees which leads to invariants that are valid for a tree in an arbitrary
simply generated family of trees. The paper [25] has a further generalization: instead
of a weight function, a system of weight functions is considered.

The research of Kemp in this area shows him largely (but not exclusively) as a for-
malist. But beyond this aspect, it can be related to more global endeavours, what
some of us call “symbolic methods.” There the field of investigation is the relation
between combinatorial structure and the resulting algebraic structure present in gener-
ating functions. Note that the class of models considered are given by the framework of
simple varieties of trees (Meir and Moon). Such trees have been gradually recognized
to be endowed with an amazingly rich set of combinatorial–analytic properties. That
class also coincides with what a branching process produces when conditioning upon
the size of the total progeny: this is yet another token of the importance of simple
varieties of trees to which Kemp devoted so much of his efforts.

7. Binary search trees

In [27], Kemp considers binary search trees, constructed from d–dimensional keys.
The first strategy orders the set of d–dimensional keys lexicographically, and then
builds a binary search tree as usual, since ‘smaller’ resp. ‘larger’ makes now sense. The
second strategy (hierarchical) uses the first entry to insert the tree. If this first entry
is already present, then consider the subtree consisting of all keys with that specified
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first component, and use now the second coordinate to insert the key, etc. The average
search times are considered. It is shown that the hierarchical method is never worse
than the lexicographical method. Some statistical assumptions have to be made about
the input keys; it is not “easy” to find a reasonable model here.

In [36], the trees generated by the before mentioned hierarchical algorithm are the
major concern, not the keys. They satisfy symbolic equations that are self–explanatory:

s +
s

�
�
�

+
s
A
A
A

+
s

�
�

�

\
\
\

F1 F1 F1 F1

=F1

s Fd−1 +
s

�
�
�

Fd−1

Fd

+
s
A
A
A

Fd−1

Fd

+
�

�
�\

\
\

s Fd−1

Fd Fd

=Fd , d ≥ 2.

The following exact enumeration result is basic: The number td(n1, . . . , nd) of such
trees with ns internal nodes in the s–th layer (1 ≤ s ≤ d), is given by

td(n1, . . . , nd) =
1

nd

∏
1≤p≤d

(
2np

np − np−1

)
.

Note that for d = 1, one gets 1
n

(
2n

n−1

)
= 1

n+1

(
2n
n

)
, a familiar Catalan number.

Kemp goes on and considers these trees to be equally likely and studies various
parameters. The tools here are—perhaps not surprisingly—the Lagrange inversion
formula and singularity analysis of generating functions (Kemp invariably prefers the
version by Darboux–Pólya). It is interesting to note that the singularities are given by
a nonlinear recursion u1 = 1/4 (the classical case), and then up = up−1/(1 + up−1)

2.
Kemp’s student Uwe Trier wrote his Ph. D. thesis about such topics [S].
In the paper [38], this study is generalized, from binary trees (d–dimensional) to

simply generated families of trees (also d–dimensional). Only a master like Kemp could
handle such complicated expressions successfully! A further paper [45] deals with d–
dimensional binary trees and the enumeration of nodes of 3 types, namely those that
have either 0, 1, or 2 subtrees. Kemp obtains very precise and satisfactory results, in
particular about the distribution of the nodes within a given layer.

The paper [40] deals with binary search trees, constructed from non–distinct keys.
(The usual assumption is that one draws keys from the unit interval.) There are two
models: the multiset model, and the probability model. For the typical parameters of
binary search trees (path length etc.), Kemp derives precise expressions for the aver-
ages, under both models. Note that there is also a revival of interest in these questions:
see for instance the highly efficient data structure due to Bentley and Sedgewick [B]
and known as the “ternary search tree.”
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8. Languages, words, and algorithms

For a formal language L, it is a fundamental problem to have algorithms to decide
whether a given word w is in L or not. A general strategy is to scan the word from left
to right, until one can stop, because no word in the language has what has been read
so far as a prefix, or, alternatively, because one finds that the word is in the language.

What is the average length of the shortest prefix which has to be read in order to
decide whether or not an input word belongs to the given language? Kemp [41] sets up
a general machinery to deal with that question, which of course depends on the given
language L. For regular languages, appropriate generating functions can be worked
out from the underlying automaton. For the Dyck language (Catalan statistics), this
leads to a lengthy series of computations. Further explicit examples are also worked
out meticulously, especially some which encode permutations and trees. Some of this
is evocative of the “Florentine algorithm,” an ingenious technique of Barcucci et al.
[A] in random generation of combinatorial structures.

The paper [43] is very long and encyclopedic. For various purposes, it is important to
have algorithms that generate all combinatorial objects of a given size. This is also re-
lated to generating combinatorial objects randomly. Now, there are numerous methods
known to code combinatorial objects, especially trees, as certain types of words (Dyck,
Motzkin, and many others). If this is the case, then one can rephrase the problem by
finding algorithms to go from one word to the next (in the lexicographic sense). Kemp
analyzes many of such algorithms, with a precision and detail for which he became
extremely famous. Work done recently by Mart́ınez and Molinero [M] in Barcelona has
extended somewhat the scope of these ideas, and some of the corresponding algorithms
have found their way into combinatorial packages of the symbolic manipulation system
Maple.

The subject of random generation and exhaustive listing of combinatorial structures
is currently an active one. We start seeing now systematic approaches to the subject.
For instance the so–called “recursive method” systematizes early works of Nijenhuis and
Wilf, while Boltzmann models, loosely connected to statistical physics, offer promising
algorithmic alternatives. It is also significant, at the time when we are writing this
note, that Knuth is gradually posting preliminary versions of Volume 4 of The Art
of Computer Programming. The topics of enumeration and backtracking are central
with subjects like “Generating all possibilities” and “Combinatorial generators” being
prominent. Surely, our friend Rainer would have enjoyed following these developments
and contributing himself to this research stream.

9. The Speckenmeyer papers

Kemp liked to work alone. All his papers are “pure” Kemp, with the exception
of two papers published jointly with Speckenmeyer [53, 52]. (One has an additional
coauthor, Rosenthal.) Here, Kemp used his expertise to improve greatly on previous
material.

Here is the summary of the more general later paper: “The problem of determining
whether a Boolean formula in conjunctive normal form is satisfiable in such a way that
in each clause exactly one literal is set true and all the other literals are set false is
called the exact satisfiability problem. The exact satisfiability problem is well known to
be NP–complete and it contains the well–known set partitioning problem as a special
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case. We study here the average time complexity of a simple backtracking strategy
for solving the exact satisfiability problem under two probability models, the constant
density model and the constant degree model. For both models we present results
sharply separating classes of instances solvable in low degree polynomial time in the
average from classes for which superpolynomial or exponential time is needed in the
average.”

In the introduction to this note, we asserted that Kemp was in several ways a precur-
sor. Here is a proof. His paper with Speckenmeyer [53] was presented at a conference
on Computer Science Logic (CSL) in 1989. At that time, there had been pretty little
work on the precise probabilistic analysis of combinatorial optimization problems. The
reference [53] does exactly that for set partitioning. Referring to the abstract that
we copied verbatim above, it is apparent that Kemp and his coauthors encountered
what is now recognized as a “threshold phenomenon” or a “phase transition.” There is
immense interest nowadays in these questions as they may help separate “easy” from
“hard” instances of difficult combinatorial problems. See for instance recent work by
Borgs, Chayes, Dubois, Pittel, and several others—there are even nowadays dedicated
conferences and special issues on these topics. This field is even of some industrial
relevance given the importance of constraint satisfaction software in a large number of
daily life applications.

10. Parsing

The first research of Kemp was related to parsing context–free languages, i.e., to
the process of algorithmically determining the derivation tree for a given word and
a specific context–free grammar G. One special subclass of context–free grammars
are the LR(k) grammars introduced by Knuth. For those grammars it is possible to
construct a finite automaton A which acts as finite control of a deterministic pushdown
transducer that parses a given input bottom–up. Here, Kemp gave sharp bounds for
the size (number of states) of A under various assumptions [1, 2, 4]. For instance he
has proven that for G an arbitrary Chomsky reduced grammar, A has at most

2 + |Ω|+
∑
f∈P

l(Z(f))

different states. Here P is the set of productions of G, Z(f) (l(Z(f))) denotes the
(length of) the right–hand side of production f and Ω := {w | (∃f, f ′ ∈ P ) (Z(f) =
wu, Z(f ′) = wv, u 6= v)}. Since even the minimal automaton may become rather
huge, it is an obvious question to ask whether or not a given parser can be used to
parse several languages. This question has been answered by Kemp in [13] where he
presented a characterization and a method for the construction of all LR(0) grammars
which can be parsed by a given LR(0) parser. It is worth noticing that this number
may be infinite. Furthermore, it is decidable whether or not a given LR(0) parser is
the (canonical) LR(0) parser of some LR(0) grammar [19]. Later, Kemp considered
the same question for a different parsing strategy, the so called precedence matrices.
In [26] he characterized all simple precedence grammars which can be parsed by means
of a given precedence matrix and presented a method for their construction.

While it is decidable whether or not a given LR(0) parser is the canonical LR(0)
parser for some LR(0) grammar, other questions relative to grammars and formal
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languages are undecidable. For instance we can not decide the ambiguity of a context–
free grammar. However, Kemp in [3] gave a criterion which, if satisfied, implies the
ambiguity of a context–free grammar. For certain classes of Chomsky reduced context–
free grammars this criterion was used to derive estimates for the probability for such
a grammar to be ambiguous.

11. The book

Kemp’s book Fundamentals of the average case analysis of particular algorithms [18]
was the first book that only dealt with the analysis of algorithms. He discusses models
of randomness, permutations and their statistics, random walks and trees, and appli-
cations (reduction of binary trees, algorithms to recognise Dyck languages, Batcher’s
sorting algorithm). There are elaborate appendices on probability theory, grammars
and formal power series, generating functions, recurrences, Dirichlet series, Cauchy’s
integral formula, Euler’s summation formula, special combinatorial sequences, and spe-
cial functions.

The book is deeply rooted in Kemp’s own research. There are also many topics
of general interest there, and it served its purpose well as the first introduction to
the subject (see our comments in our introduction). Today, twenty years later, it is
interesting to observe that some of the material it covers is still not to be found in
synthetic form anywhere else.

Let us finally mention that in November 2004, there appeared a special issue of the
Journal of the Iranian Mathematical Society (Volume 3, number 2). The theme is
Probabilistic Analysis of Algorithms. Thanks to the courtesy of the editors, Professor
Ahmad Parsian and Professor Hosam Mahmoud, this special issue has been dedicated
to Rainer Kemp “in remembrance of a long and prolific career in analysis of algorithms.”
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Théor., 17(3):249–284, 1983.
[18] R. Kemp. Fundamentals of the average case analysis of particular algorithms. Wiley-Teubner

Series in Computer Science. John Wiley & Sons Ltd., Chichester, 1984.
[19] R. Kemp. On a decidability and translation result concerning LR(0) grammars. Elektron. Infor-

mationsverarb. Kybernet., 20(12):611–621, 1984.
[20] R. Kemp. On a general weight of trees. In STACS 84 (Paris, 1984), volume 166 of Lecture Notes

in Comput. Sci., pages 109–120. Springer, Berlin, 1984.
[21] R. Kemp. Free cost measures of trees. In Fundamentals of computation theory (Cottbus, 1985),

volume 199 of Lecture Notes in Comput. Sci., pages 175–190. Springer, Berlin, 1985.
[22] R. Kemp. Additive weights of nonregularly distributed trees. In Random graphs ’85 (Poznań,
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volume 5, pages 99–121, 1994.

[38] R. Kemp. On the inner structure of multidimensional simply generated trees. In Proceedings of
the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics
and Computer Science, “Random Graphs ’93” (Poznań, 1993), volume 6, pages 121–146, 1995.
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