
SUMS OF SQUARES OF TETRANACCI NUMBERS: A GENERATING FUNCTION
APPROACH

HELMUT PRODINGER AND SARAH J. SELKIRK

ABSTRACT. It is demonstrated how an explicit expression of the (partial) sum of Tetranacci
numbers can be found and proved using generating functions and the Hadamard product. We
also provide a Binet-type formula for generalized Fibonacci numbers, by factoring explicitly
the denominator of their generating functions.

1. INTRODUCTION

Tetranacci numbers un are defined either by the recursion

un+4 = un+3 + un+2 + un+1 + un, where u0 = 0, u1 = 1, u2 = 1, u3 = 2,

or via the generating function
∑

n≥0

unzn =
z

1− z − z2 − z3 − z4
.

A typical result in the recent paper [4] is the evaluation
∑

0≤k≤n

u2
k =

1
3
+ unun+1 −

1
3
(un+1 − un−1)

2 +
1
3

unun−2 +
1
3

un−2un−3.

for which a (long) proof by induction had been given.
The present note wants to shed some light on how to use generating functions to prove

such a result and also how to find this (or an equivalent formula).
Furthermore, all the roots of the polynomial 1− z − z2− · · · − zh are explicitly determined

in terms of generalized binomial series.

2. THE HADAMARD PRODUCT OF TWO POWER SERIES

For two power series (generating functions) f (z) =
∑

n anzn, g(z) =
∑

n bnzn, the Hadamard
product is defined as

∑

n≥0

an bnzn.

If both f (z) and g(z), are rational, the resulting power series is again rational. There are
computer algorithms to do this effectively, for instance GFUN [3], implemented in MAPLE.
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We provide a simple example of the Hadamard product of two generating functions: Let

f (z) =
∑

n≥0

n2nzn =
2z

(1− 2z)2
, and g(z) =

∑

n≥0

n3nzn =
3z

(1− 3z)2
.

By multiplying like coefficients of f (z) and g(z), the Hadamard product is given by

∑

n≥0

n26nzn =
6z(1+ 6z)
(1− 6z)2

,

where the generating function is computed by GFUN.
To give an example in the context of Tetranacci numbers, the Hadamard product of the

generating function z/(1− z − z2 − z3 − z4) with itself is given by

∑

n≥0

u2
nzn =

z − z2 − 2 z3 − 2 z4 − 2 z5 + z6 + z7

1− 2 z − 4 z2 − 6 z3 − 12 z4 + 4 z5 + 6 z6 + 2 z8 − z10
.

By general principles, the generating function of the partial sums is then given as

∑

n≥0

� ∑

0≤k≤n

u2
k

�

zn =
1

1− z
·

z − z2 − 2 z3 − 2 z4 − 2 z5 + z6 + z7

1− 2 z − 4 z2 − 6 z3 − 12 z4 + 4 z5 + 6 z6 + 2 z8 − z10

=
z

3(1− z)
+

2 z + z2 − z3 − z4 + 5 z5 + 4 z6 + z7 + z8 − z9 − z10

3(1− 2 z − 4 z2 − 6 z3 − 12 z4 + 4 z5 + 6 z6 + 2 z8 − z10)
(1)

But we can compute the Hadamard product involving coefficients un and un+2,

∑

n≥0

unun+2zn =
2z

1− 2 z − 4 z2 − 6 z3 − 12 z4 + 4 z5 + 6 z6 + 2 z8 − z10
,

and by letting tn =
1
2unun+2, we can compare this with the generating function in (1) to find

for n≥ 1,
∑

0≤k≤n

u2
k =

1
3
+

1
3
(2tn + tn−1 − tn−2 − tn−3 + 5tn−4 + 4tn−5 + tn−6 + tn−7 − tn−8 − tn−9).

This is an equivalent formula for the one obtained in [4]. Note that tn = 0 for negative
indices. The fact these two formulas are indeed equivalent can be checked by a computer,
noting that all the generating functions

∑

n≥0

un−iun− jz
n,

fixed integers i, j, can be effectively computed via the Hadamard product algorithm, imple-
mented in GFUN.
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3. HIGHER ORDER FIBONACCI-TYPE RECURSIONS

To show how the generating function machinery works on similar but more involved sums,
let us step up a bit and define

∑

n≥0

unzn =
z

1− z − z2 − z3 − z4 − z5
.

Again computing the Hadamard product of this generating function with itself, we find
∑

n≥0

� ∑

0≤k≤n

u2
k

�

zn =
3z

8(1− z)

+
−5 z−3 z2+z3+4 z4+2 z5−34 z6−30 z7−20 z8−20 z9−16 z10+6 z11+6 z12+3 z13+3 z14+3 z15

8(1− 2z − 4z2 − 7z3 − 14z4 − 28z5 + 4z6 + 6z7 + 4z9 + 10z10 − z12 − z15)
With a shift in coefficients as done in the previous example, we compute that

∑

n≥0

unun+3zn =
4z

1− 2z − 4z2 − 7z3 − 14z4 − 28z5 + 4z6 + 6z7 + 4z9 + 10z10 − z12 − z15
.

We let tn =
1
4unun+3 and can then express the sum in question as follows:
∑

0≤k≤n

u2
k =

3
8
+

1
8
(−5tn − 3tn−1 + tn−2 + 4tn−3 + · · ·+ 3tn−13 + 3tn−14).

This process can be generalized to any higher order Fibonacci-type recursion, such as
∑

n≥0

unzn =
z

1− z − z2 − z3 − z4 − z5 − z6
,

and other identities and related expressions can also be computed, but are too long to be
displayed here.

4. HIGHER ORDER FIBONACCI-TYPE NUMBERS

The general case is represented by the generating function

z
1− z − · · · − zh

=
z

1− z ·
1− zh

1− z

=
z(1− z)

1− 2z + zh+1
,

with the classical case being h= 2.
The dominant root of this rational function already occurs in the literature, see for example

[2].
However, we can do better than that and describe all the roots of the denominator, obtain-

ing in this way a Binet-type formula. We consider the generating function
1

1− 2z + zh+1
,

from which the original case can be obtained by simple shifts.
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We determine the roots of the denominator in terms of generalized binomial series, going
back to Lambert, and described in more detail in [1]. The generalized binomial series is
defined as

�

Bt(x)
�r
=
∑

n≥0

�

tn+ r
n

�

r
tn+ r

xn.

Given the expression 1− z
u + zh+1, let ζ be a h-th root of unity. Then the h+ 1 roots can be

expressed in terms of these generalized binomial series as

uBh+1(u
h+1) and ζ− ju−

1
hB(h+1)/h

�

ζ ju
h+1

h
�− 1

h for 0≤ j ≤ h− 1.

In our case, we are dealing with the special case where u= 1
2 .

It is easy to verify (and the calculation for u= 1
2 has appeared in [2]) that

1− uBh+1(u
h+1) + uh+1Bh+1(u

h+1)h+1 = 0.

Now, the other roots can be checked by considering first j = 0:

1− u−(h+1)/hB(h+1)/h

�

u
h+1

h
�− 1

h + u−
(h+1)

h B(h+1)/h

�

u
h+1

h
�− (h+1)

h

= 1−
∑

n≥0

� (h+1)n−1
h

n

�

−1
(h+ 1)n− 1

u
(h+1)(n−1)

h +
∑

n≥0

� (h+1)(n−1)
h

n

�

−1
n− 1

u
(h+1)(n−1)

h .

Since
� (h+1)n−1

h

n

�

−1
(h+ 1)n− 1

= −
( (h+1)(n−1)

h ) · · · ( n−1+h
h )

h · n!
,

and
� (h+1)(n−1)

h

n

�

−1
n− 1

= −
( (h+1)(n−1)

h ) · ( (h+1)(n−1)−h
h ) · · · ( n−1+h

h ) · ( n−1
h )

(n− 1)n!
= −
( (h+1)(n−1)

h ) · · · ( n−1+h
h )

h · n!
,

the result follows. The roots for j 6= 0 follow from the substitution u = 1 · u, and with the
power of 1

h playing a role at each u, we obtain all possible roots of unity.
From this, we can explicitly compute the coefficients of

1
1− 2z + zh+1

.

For ease of notation, let rh =
1
2Bh+1

�

1
2h+1

�

, and for 0≤ j ≤ h− 1 let

r j = ζ
− j2

1
hB(h+1)/h

�

ζ j
�1

2

�
h+1

h
�− 1

h
.
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Then using partial fractions and these ri values, we can compute that

[zn]
1

1− 2z + zh+1
= [zn]

1
(z − r0)(z − r1) · · · (z − rh)

= [zn]
h
∑

i=0

1
(z − ri)

h
∏

j=0
j 6=i

(ri − r j)
−1

= −
h
∑

i=0

1
rn+1

i

h
∏

j=0
j 6=i

(ri − r j)
−1.

Therefore we have obtained a Binet-type formula for generalized Fibonacci numbers. In fact,
with these coefficients it is possible to compute and verify identities on the level of coefficients
for expressions such as those discussed in previous sections.

To provide a concrete example of how one might use these roots to compute generalized
Fibonacci numbers, we provide a formula for the Tetranacci numbers!

Tetranacci numbers are the case when h = 4, so the five roots are (as calculated by a
computer)

r4 =
1
2
B5

� 1
25

�

= 0.518790063675884,

r0 = r2
1
4B5/4

��1
2

�
5
4
�− 1

4
= 1,

r1 = −i2
1
4B5/4

�

i
�1

2

�
5
4
�− 1

4
= −0.114070631164587− 1.21674600397435i,

r2 = −2
1
4B5/4

�

−
�1

2

�
5
4
�− 1

4
= −1.29064880134671,

r3 = i2
1
4B5/4

�

− i
�1

2

�
5
4
�− 1

4
= −0.114070631164587+ 1.21674600397435i.

Using these roots and the initial values, we then determine the values of A, B, C , D, and E in
the system

un = A · r−n
4 + B · r−n

0 + C · r−n
1 + D · r−n

2 + E · r−n
3 .

Again using a computer, we find that these are given by

A= 0.293813062773642

B = 0

C = −0.0504502052166080− 0.169681902881564i
D = −0.192912652340427

E = −0.0504502052166080+ 0.169681902881564i
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Therefore the n-th Tetranacci number can be calculated via the formula:

un =
0.293813062773642
(0.518790063675884)n

−
0.0504502052166080+ 0.169681902881564i
(−0.114070631164587− 1.21674600397435i)n

−
0.192912652340427
(−1.29064880134671)n

+
−0.0504502052166080+ 0.169681902881564i
(−0.114070631164587+ 1.21674600397435i)n

.
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